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Abstract

Critical analysis of light depolarization technique (LDT) widely used in polymer crystallization kinetics is presented. It is demonstrated,

that intensity of light depolarized on a system of birefringent crystals cannot be treated as a measure of volume fraction of crystalline phase

(degree of crystallinity). Intensity of light depolarized in a polycrystalline system is a non-linear function of the product of the degree of

crystallinity and function of average crystal dimensions. Closed-form expression for depolarization ratio is derived and the range of

conditions where linear approximation is acceptable is discussed.

In spite of interpretational weaknesses, further development of light depolarization technique seems to be justified by potentially short

response time. LDT may appear useful for studying rapid crystallization processes (above 1 kHz sampling frequency), which cannot be

followed by measurements of density, X-ray diffraction or calorimetry. However, the LDT data either have to be combined with independent

measurements of crystal thickness, or treated as a ‘crystallization characteristic’ per se, quantitatively inconsistent with calorimetric,

volumetric or X-ray diffraction data.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Crystallization plays essential role in determining

physical properties of various materials, in particular

organic polymers. In industrial processing, crystalline

structure of the polymer and its morphology is developed

in complex conditions including rapidly changing defor-

mation, stress and temperature which calls for rapid

measurement of the degree of crystallinity. Experimental

techniques of crystallization kinetics based on calorimetry

(DSC) density (dilatometry, density-gradient column) or

X-ray diffraction (WAXSSAXS) offer reliable information

limited, however, to slow processes. Maximum sampling

frequency available does not exceed 1–10 Hz, while non-

isothermal and stress-induced crystallization processes may

require sampling frequency in excess of 1 kHz. In these

circumstances, measurement of light depolarization seems a

promising solution.
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First attempts of following polymer crystallization by

light depolarization technique (LDT) were made in 50s and

early 60s of the XX century [1–5]; the method is currently in

use in a slightly modified form [6–10]. Theoretical back-

ground provided by the theory of compensators [11,12]

considers stack of optically anisotropic plates parallel to the

polarizer plane. This assumption, natural for compensators,

has been adopted to polycrystalline systems where individ-

ual crystals may be inclined to the polarizer plane.

Inclination of crystal plates affects average optical retar-

dation and absolute intensity of the depolarized light.

Relative variations of depolarization ratio (and the relative

changes of crystallinity) would not be affected, though.

Analyzing the LDT as it is currently applied we will keep

the assumption of parallelity unchanged. More general

model admitting tilting of crystal plates and non-uniform

orientation distribution will be published separately.

In spite of the fact that many experimental data have

been accumulated, very little reflection was devoted to their

interpretation. We are going to reconsider the problem.

Following the theory of compensators [11], we will analyze

light depolarization in a statistical system of birefringent
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crystal plates parallel to the plane of polarizer (Fig. 1). The

polarizer (P), analyzer (A) and crystal plate (CR) all lie in

the plane XY. Optical axes of individual plates are oriented

with respect to polarizer by angles ai (Fig. 2).
Fig. 2. Orientation of optical axes with respect to polarizer in the plane

normal to light beam. Sample axis (S) parallel to polarizer (P); f,

orientation of the analyzer (A), ai, orientation of the axis of an i-th crystal

(CR).
2. Review of the earlier work

2.1. Experimental setup

First experiments using light depolarization to study

crystallization of polymers were made by Fischer and

Schram [1]. Parallel light beam traveling along the Z axis

passes polarizer, P, sample, S, and analyzer, A, all placed on

planes normal to Z (Fig. 3). The analyzer is rotated in the XY

plane with respect to the polarizer, and intensity of the

transmitted light, I, is recorded as a function of the analyzer

rotation angle f (Fig. 2). On the other hand, Magill [2–5]

replaced one eyepiece of the polarizing microscope with a

photosensor and measured light intensity transmitted

through crossed polarizers (fZ(1/2)p).
Fig. 1. Parallel crystal plates in a polycrystalline system (a) film sample in

the coordinate system, (b) projection on the XY plane, (c) projection on the

XZ plane. Z, direction of the light beam.
Consider a single birefringent plate placed between

polarizer and analyzer. Optical axis of the plate is oriented

at the angle a with respect to the polarizer and the analyzer

is oriented at the angle f vs. polarizer (Fig. 2). According to

the theory of compensators [11,12] intensity of the incident

(linearly polarized) light, I0, after passing through the plate

is changed to

Ið4ÞZ I0 cos24Csin 2a sin 2ð4KaÞsin2
d

2

� �
(1)

Relative optical retardation of the plate, d, is a function of

optical birefringence, Dn, thickness of the plate, d, and

wavelength of the incident light, l

dZ
2pDnd

l
; DZ sin2

d

2
(2)

When measurements are made with crossed polarizers, fZ
(1/2)p

It
I0

Z sin22aD (3)

In the absence of scattering and absorption, the reference
Fig. 3. Light depolarization setup with one detector. P, polarizer; S, sample;

A, analyzer; D, detector.
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intensity, I0, is that of the incident light. Larger crystallites

and crystalline superstructures (spherulites) embedded in an

amorphous matrix may scatter light. The corrections for

scattering were discussed in Refs. [1,6–9]. To take

scattering into account, Ding and Spruiell [8] replaced

eyepieces of the polarizing microscope with two photo-

sensors. Light leaving the sample was split into two beams

(Fig. 4). One of the beams passed analyzer and its intensity,

I1, was measured by the detector D1; the other beam, I2, was

deflected and measured by another detector (D2) without

passing through the analyzer. Scattering reduces intensity of

the transmitted light. Therefore, depolarized intensity

leaving the analyzer, I1, should be compared with incident

intensity reduced for scattering, I0KIS

It Z I1 (4)

I2 Z I0 K IS

I1
I2
h

It
I0 K IS

Z sin22aD

Fischer and Schram [1] who recorded intensity transmitted

through the analyzer at various angles f, made use of the

fact that the sum of intensities transmitted through the

analyzer parallel and perpendicular to the polarizer is a

constant and presented reference intensity corrected for

scattering as

Is C It Z I0 K IS (5)

It
I0 K IS

h
It

Is C It
Z sin22aD

Determination of the depolarization ratio requires two

measurements: either I1 and I2 (in the Ding and Spruiell

setup), or It and Is (according to Fischer and Schram). The

ratio

2It
Is C It

Z
2It

I0 K IS
(6)
Fig. 4. Light depolarization setup with two detectors. P, polarizer; S,

sample; A, analyzer; BS, beam splitter. D1 and D2, detectors.
is a measure of the degree of depolarization. Degree of

depolarization reduces to zero in the absence of birefringent

elements between the polarizer and analyzer and asympto-

tically approaches unity in a system of many randomly

oriented birefringent objects, when polarization of the

transmitted light is changed from elliptic to circular.

2.2. Interpretation of light depolarization experiments

Except Fischer and Schram [1] who studied phase

transitions (crystallization and melting) as a function of

temperature, light depolarization technique was used to

following crystallization kinetics [2–10,16]. All authors

assumed (explicitly, or implicitly) that depolarization

intensity expressed by the single crystal formula (Eqs. (1)

and (3)) provides a measure of the degree of crystallinity.

There are some controversial problems associated with such

interpretation.

The first controversy, raised by one of us a few decades

ago [13], concerned optical interaction of many crystals

appearing in the light path. Crystallizing systems consist of

many birefringent plates, arranged in the light path either

side-by-side or in series. Fig. 1 illustrates possible

arrangements of parallel plates. For a stack of parallel

plates the theory [11,12] predicts non-additive light

intensity. Ziabicki [13] argued that single-crystal formula,

Eq. (3), should be applied only to very dilute systems, and/

or very thin samples, in which probability of the appearance

of more than one crystal in the light path is negligible. On

the other hand, Binsbergen [14] developed a model of stacks

of plates with small optical retardation (D/1), claiming

applicability of the single-crystal formula to non-dilute

systems. We will show that neither the condition of low

concentration (Ziabicki) nor thin-plate requirement (Bins-

bergen) is sufficient for quantitative description of depolar-

ization in terms of the single-crystal formula. We will define

the range of conditions in which linear approximation is

acceptable, and present a general formula applicable in the

entire range of conditions.

Another controversial point is proportionality of depolar-

ization ratio to volume fraction of birefringent elements

(degree of crystallinity, x). We will show that depolarization

ratio is not proportional to crystallinity alone, but to

crystallinity multiplied by a function of average plate

dimensions. Binsbergen [14] did notice this problem, but

circumvented it assuming constant crystal thickness. Also in

the Ding thesis [6] there appears depolarization intensity

proportional to the product of crystallinity and lamellar

thickness, but in the final publications [7–9] the thickness

has been incorporated in a constant. We will discuss several

special situations when development of crystallinity can be

estimated from variation of the depolarization ratio, but

there is hardly a way of knowing a priori which specific

situation can be expected.

All authors studying polymer crystallization via light

depolarization required crystals to be randomly oriented in
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the sample and the amorphous matrix to be optically

isotropic. The problem is not purely academic: the main

motivation for following high-speed crystallization using

light depolarization concerns oriented systems in which

crystal orientation is not random and the amorphous matrix

is anisotropic. Extension of the theory onto systems with

arbitrarily oriented crystals will be presented in a separate

paper.
Fig. 5. Average number of crystals in the light path, E, vs. degree of

crystallinity, x. Sample-to-crystal thickness ratio, B/hdi indicated.
3. Theory of light depolarization in a statistical system of

parallel crystal plates

3.1. Description of the system

Consider a flat film with thickness, B, and surface area, F,

containing N birefringent crystal plates parallel to the

sample plane, each with surface area fi, and thickness di. The

degree of crystallinity, x, defined as volume fraction of the

crystalline phase reads

xZ
1

FB

XN
iZ1

fidi Z
Nhfdi

FB
(7)

Naturally, x is limited to unity. On the other hand,

depolarization ratio is controlled by the number of plates

appearing in the light path and their optical anisotropy. The

average number of plates appearing in the light path in

series is

EZ hniZ
1

F

XN
iZ1

fi Z
Nhf i

F
(8)

E is the sum of projections of all plates on the base of the

sample divided by surface area of the sample, F.

Comparison of Eqs. (7) and (8) yields relation between

crystallinity, x, and the parameter E

EZ x
Bhf i

hfdi
ZB

x

hdi
X½wðf ; dÞ� (9)

X is a functional of the plate size distribution function,

w(f,d) which reduces to unity when the distribution w(f,d) is

infinitely narrow.

The probability P(n) that there appear exactly n plates in

the light path, can be obtained from the Poisson distribution

PðnÞZ const:
En

n!
(10)

The above distribution normalized in the final range

0%n%Emax reads

PðnÞZ
En

n!

XEmax

kZ0

Ek

k!

 !K1

(11)

but Emax being very large (cf. Fig. 5 below), Eq. (11) can be

replaced with standard Poisson distribution normalized in

the infinite range of n
PðnÞy
eKEEn

n!
(12)

3.2. Depolarization of light in a stack of parallel plates

General expressions for light intensity transmitted

through a stack of exactly n birefringent elements has

been derived by Hsü, Richartz and Liang [11]. Their result

averaged over orientation angles ai and retardation func-

tions Di yields [15]

h
Inð4Þ

I0 K IS
iZ cos24

K
1

2
cos 24 2

n

1

 !
DSK4

n

2

 !
D2S2

"

C8
n

3

 !
D3S3 K.C ðK2Þn

n

n

� �
DnSn

#

(13)

where SZhsin22aii and DZhDii. It is evident that Eq. (13)

can be presented in a compact form

h
Inð4Þ

I0 K IS
iZ cos24

K
1

2
cos 24

Xn
kZ1

ðK1ÞkK1
n

k

 !
ð2DSÞk

Z
1

2
C

1

2
cos 24ð1K2DSÞn (14)

The intensity of light transmitted through the polycrystalline

sample, Itrans(f) is a sum of average contributions, hIn(f)i,

weighted with the appropriate probabilities P(n)
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Itransð4Þ

I0 K IS
Z
XN
nZ0

h
Inð4Þ

I0 K IS
iPðnÞ

Z eKE cos24C h
I1ð4Þ

I0 K IS
i
E

1!
C h

I2ð4Þ

I0 K IS
i
E2

2!
C.

� �
(15)

Combination of Eqs. (14) and (15) yields function of the

single variable, (DES)

Itransð4Þ

I0 K IS
Z eKE

XN
nZ0

En

n!

1

2
C

1

2
cos 24ð1K2DSÞn

� �

Z cos24K
1

2
cos 24½1KeK2DES� (16)

In the case of random crystal orientation (SZ1/2)

Itransð4Þ

I0 K IS
Z cos24K

1

2
cos 24½1KeKDE�

Z cos24

K
1

2
cos 24 DEK

1

2
ðDEÞ2 C

1

6
ðDEÞ3 K.

� �

Z cos24K
1

2
cos 24FðDEÞ

(17)

In all experimental studies [2–10,16] only the first, linear

term of the expansion (17) was used

Itransð4Þ

I0 K IS
ycos24K

1

2
cos 24DE (18)

Eq. (18) is equivalent to single crystal formula (Eq. (1))

averaged over distribution of orientation angles, a and

retardation functions D.

It is evident that neither small surface concentration of

crystals E (claimed in Ref. [13]) nor small optical

retardation of a single plate, D (Ref. [14]) does provide

correct criterion of linearization. It is the combined variable,

(DE), which should be small to justify replacement of the

non-linear function F (Eq. (17)) with the single-crystal

formula, Eq. (18). Before analyzing the range of conditions

in which linear approximation of the function F(DE) is

acceptable, we will briefly review another model [14]

claimed to describe multiple depolarization in a concen-

trated system of thin plates.

Binsbergen [14] considered a stack of k thin, birefringent

plates in the light path. Optical retardation of each plate was

assumed small (di/1), and orientation distribution of

plates within the stack-random. Each k-element stack was

treated as a single birefringent object
hsin22a sin2
d

2
ikKstack ¼

* Xk
i¼1

sin 2ai sin
di

2

" #2+

¼
Xk
i¼1

hsin22aii hsin
2 di

2
i

� �
(19)

which, after averaging over random orientation distribution

W(ai)Zconst. yields

Ikð4Z 1=2pÞ

I0 K IS

� �
kKstack

Z hsin22aikD/1=2kD (20)

In the process of averaging, mixed sine products hsin 2ai -

sin 2aji in Eq. (19) disappear for symmetry reasons. After

summation with the Poisson distribution the stack model

reduces to the first term of the expanded function F(DE)

It
I0 K IS

Z
XN
kZ0

h
Ikð4Z 1=2pÞ

I0 K IS
iPðkÞZ 1=2D

XN
kZ0

kPðkÞ

Z 1=2hkiDh1=2DE (21)

Can the stack of k thin plates be treated as a single object?

Yes, provided that what is small, is average retardation of

the entire stack, (kD), rather than that of the single plate, D.

Binsbergen model is equivalent to the first term of the

general expression (Eq. (17)), or Eq. (18). Binsbergen and

de Lange [16] who tested their model numerically,

considered relatively small number of plates within a

stack (up to kZ20) and assumed rather low intrinsic

birefringence (Dn!0.007) which naturally did fit the linear

range. We will show that the number of plates within the

stack may be as high as 103–105 and well outside the linear

region.
4. Polynomial approximation of the depolarization

function F(DE)

We will analyze approximation of the depolarization

function F(DE) using m-degree polynomials, Fm

FðDEÞZ
1

2
½1KeKDE� (22)

FmðDEÞZ
1

2
DEK

1

4
ðDEÞ2 C

1

12
ðDEÞ3 K.

C
ðK1ÞmK1ðDEÞm

2m!

We are looking for the range of the variable DE in which

truncation of the infinite series on the m-th term (mZ2,

3,.) creates error smaller than 1%. Critical DE values, Cm

found from the condition



Fig. 6. Optical retardation function, DZsin2((1/2)d), vs. average crystal

thickness, hdi. Birefringence, Dn, indicated. Wavelength, lZ650 nm.
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FðCmÞKFmðCmÞ

FðCmÞ

����
����Z 0:01 (23)

are listed in Table 1.

C1 provides upper limit of the variable DE when single-

crystal formula (linear approximation, mZ1) can be

applied. With C1Z0.02 up to 2000 plates in stack can be

accommodated provided that retardation function of a single

plate,D, does not exceed 10K5. Alternatively, when average

retardation function is DZ0.1, linear approximation

requires that the system is very dilute (E!0.2). Two-term

approximation, F2, can accommodate systems character-

ized by DE%0.238, etc.

We will analyze the range of the parameters E and D in

polycrystalline systems. For this purpose we will assume

infinitely narrow distribution of crystal sizes, XZ1 leading

to

X½wðf ; dÞ�Z 1 (24)

EyB
x

hdi

The average number of crystal plates in the light path, E, is

roughly proportional to the degree of crystallinity, x, sample

thickness, B, and inversely proportional to average crystal

thickness, hdi. Thickness of polymer samples used for

optical measurements lies within the range of 10–200 mm
and the average thickness of polymer crystals ranges from 1

to 100 nm. Consequently, the ratio B/hdi appearing in the

approximate formula (24) varies from 102 to 2!105.

Fig. 5 presents E calculated from the approximate

formula Eq. (24) plotted vs. degree of crystallinity, x, at

constant thickness ratios. It is evident that, except for very

low crystallinities (x!0.01) and/or extremely thin samples

(B/hdi!100) there appear in the light path many crystals in

series.

The effect of large E may be compensated by small

values of optical retardation, D.

To estimate optical retardation function for a single plate,

we assume wavelength lZ650 nm and birefringence

ranging from DnZ0.02 to 0.70. This covers majority of

polymers, from cellulose acetate (DnZ0.02), through

polyethylene (DnZ0.044) [17] and polyethylene tereph-

thalate (DnZ0.118) [18] up to aramide (DnZ0.662) [17].

Fig. 6 presents average retardation function, D, as a function

of crystal thickness, hdi. The range of hdi considered starts

with 1 nm (crystallites with a few lattice distances) and

reaches 100 nm (polymer crystals slowly grown under high

pressure [19]). It is evident that in the entire range of hdi,

retardation function is much smaller than unity, which
Table 1

Critical values of the variable DE

Number of terms, m 1 2 3

CmZ(DE)crit 0.020 0.238 0
justifies approximation of the retardation function D

suggested by Binsbergen [14]

Dy
hd2i

4
Z

pDn

l

� �2

hd2iZ
pDn

l

� �2

hdi2Q½wðd; f Þ� (25)

where Q is another functional of the size distribution

function, w. Using the approximation (25) the variable DE

DEyB
pDn

l

� �2 xhf i hd2i

hfdi

� �

¼ B
pDn

l

� �2

xhdiXðwÞQðwÞ (26)

appears to be proportional to the product of crystallinity and

a functional of crystal size distribution, w(f,d). For very

narrow distribution (XZQZ1) DE reduces to

DEyB
pDn

l

� �2

xhdi (27)

Approximations Eqs. (24) and (27) are being used as a

rough, but transparent estimate of the relationship between

the depolarized light intensity and structure of the system.

Fig. 7 presents values of DE estimated from Eq. (27) and

plotted vs. degree of crystallinity, x, for various products of

sample and crystal thickness, (Bhdi).

For reasonably thin crystals (hdiZ1–10 nm) and thin

samples (B!100 mm) the variable DE lies in the range of

0.002–0.2. At the lower DE end application of the linear

(single-crystal formula), or the Binsbergen stack model
4 5

.588 0.974 1.364



 

 

Fig. 7. The combined variableDE vs. degree of crystallinity, x. The product

of crystal and sample thickness, (hdiB) (nm2), indicated. DnZ0.1, lZ
650 nm.
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seems justified. On the other hand, crystals with average

thickness 100 nm even in reasonably thin samples, BZ
20 mm, yield DE values too high for linear approximation,

which calls for using several terms in Eq. (20). When the

subject of interest is onset of crystallization (i.e. crystallinity

is smaller than 0.05), DE does not exceed 0.02 and linear

approximation can still be used. Application of thinner

samples (smaller B) expands the range of admissible

characteristics hdi and x.

Linearity of depolarization intensity vs. variable DE can

also be checked experimentally. Since E is proportional to B,

doubling film thickness should result in doubling depolariz-

ation ratio if the argument DE lies in the linear range

B/2B; E/2E;
It

I0 K IS
ð2DEÞZ 2

It
I0 K IS

ðDEÞ (28)

Whenever the above test fails, more terms of the expansion

should be used. Ding and Spruiell [6,8] demonstrated

proportionality of depolarization intensity to sample thick-

ness, B, in agreement with the condition (28).
5. Depolarization ratio and the degree of crystallinity

In the linear approximation of the theory, combination of

Eqs. (21) and (27) yields approximate relationship between

depolarization ratio and the degree of crystallinity

It
I0 K IS

y
1

2

pDn

l

� �2

xBhdi (29)

It is evident that depolarization ratio is proportional to the

product of crystallinity and crystal thickness, rather than

crystallinity alone. Both characteristics may change inde-

pendently in the course of crystallization.
Consider a process of crystallization followed by

measurement of depolarization ratio. Relative variation of

crystallinity, _x=xZd ln x=dt, may result from different

mechanisms:

d ln x

dt
Z

d ln N

dt
C

d ln hfdi

dt
(30)

Nucleation changes number of crystals, N. Lateral and

thickness growth rates affect average crystal volume, hfdi. At

the same time, relative variation of depolarized light

intensity depends on the number of crystal plates, N, their

average surface, hfi, and average square of thickness, hd2i

d ln½It=ðI0 K ISÞ�

dt
Z

d ln N

dt
C

d lnhf i

dt
C

d lnhd2i

dt
(31)

Combination of Eqs. (30) and (31) yields relationship

between the relative rates of depolarization and crystal-

lization

d ln½It=ðI0 K ISÞ�

dt

Z
d ln x

dt
C

d lnhf i

dt
C

d lnhd2i

dt
K

d lnhfdi

dt

Z
d ln x

dt
C

d lnhdi

dt
C

d lnðXQÞ

dt
(32)

is controlled not only by the overall degree of crystallinity,

x, but also on the distribution of crystal sizes (functionals X

and Q). With the narrow distribution approximation, XZ
QZ1, Eq. (32) reduces to

d ln½It=ðI0 K ISÞ�

dt
y

d ln x

dt
C

d lnhdi

dt
(33)

Relative depolarization rate is equal to the sum of relative

crystallization rate and relative rate of variation of crystal

thickness.

The fact that depolarized light intensity is proportional to

the product of crystallinity and crystal thickness, rather then

crystallinity alone, has been noticed by Binsbergen [14].

Assuming predetermined nucleation ð _NZ0Þ and identical

linear growth rate in all crystal dimensions

hdðtÞif _Rt; hf ðtÞif ð _RtÞ2; _RZ const: (34)

Binsbergen arrived at the degree of crystallinity, x, pro-

portional to the third power of time and depolarization

intensity proportional to the fourth power, in accordance with

Eq. (33). Binsbergen tried to explain this discrepancy by

assuming constant plate thickness (dhdi/dtZ0) and/or change

of the intrinsic birefringence in the course of crystallization.
6. Some special cases

We will discuss development of depolarization ratio and

crystallinity in special conditions. For the sake of simplicity
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our discussion will be based on the narrow distribution of

crystal dimensions, leading to approximation Eq. (33).
(i)
 Crystal thickness does not change in time. Crystal-

lization rate is controlled by nucleation and lateral

crystal growth h_f i. Consequently, relative crystallization
rate is equal to relative variation of depolarization ratio

dhdi

dt
Z 00

d ln½It=ðI0 K ISÞ�

dt
Z

d ln x

dt
(35)
(ii)
 The number of crystals is constant and their linear

growth rate is the same in all directions

_N Z 0o
d lnhf i

dt
Z 2

d lnhdi

dt

� �

0
d ln½It=ðI0 K ISÞ�

dt
Z

4

3

d ln x

dt

(36)

which yields situation described by Binsbergen [14,16].
(iii)
 The number of crystals, N, and their lateral dimensions

h f i are constants. Crystallization rate and variation of

depolarization intensity are both controlled by the

variation of thickness.

ð _N Z h _f iZ 0Þ0
d ln½It=ðI0 K ISÞ�

dt
Z 2

d ln x

dt
(37)

Unfortunately, there is no way to predict a priori which

case we are actually facing. To quantitatively interpret

light depolarization intensity in terms of crystallinity,

an independent measurement of crystal thickness (or

optical retardation function, D) is required.
7. Discussion

Theoretical analysis reveals two features of light

depolarization technique (LDT) when applied to crystal-

lization studies. Unlike calorimetry, dilatometry, or X-ray

diffraction, light depolarization alone does not provide a

direct measure of the degree of crystallinity.

Depolarization ratio is a non-linear function of the single

variable DE

It
I0 K IS

Z
1

2
½1KexpðKDEÞ�Z

1

2
DEK

1

4
ðDEÞ2 C.

(38)

proportional to the degree of crystallinity, x, and a

functional of the distribution of crystal plate dimensions, d

and f

DEZ ln
Is C It
Is K It

� �
ZBhsin2

pDnd

l

� ��
xhf i

hfdi
(39)
which, in the approximation of thin crystals (Eq. (25)) and

narrow dimension distribution (Eq. (27)) reduces to the

product of crystallinity and average crystal thickness

DEyB
pDn

l

� �2

xhdi (40)

Depolarization experiments yield the variable DE. Deter-

mination of the degree of crystallinity, x, requires

decoupling of DE and independent determination of the

average crystal thickness, hdi.

An alternative to decoupling is resignation from inter-

preting light depolarization data as a conventional measure

of the degree of crystallinity, quantitatively comparable

with calorimetric, density or X-ray diffraction data.

Assuming directly observable quantity DE (Eq. (39)) as a

crystallization characteristic per se, comparative infor-

mation about structure and structural changes can be

obtained. The variable DE could be used for correlation

with other physical properties. For example light depolar-

ization data converted into the variable DE could be

correlated with rheological characteristics of a polymer melt

and might provide valuable information about structural

effects in polymer processing.

An important outcome of our analysis is closed-form,

non-linear expression for depolarization ratio valid for the

entire range of the argument DE which should replace the

single-crystal formula (Eqs. (1) and (21)). All experiments

involving LDT took only first, linear term in the power

expansion of the general intensity function. We have

discussed conditions where such an approximation can be

used and demonstrated the necessity of using the non-linear

formula.

In spite of the controversial interpretation, further

development of light depolarization technique seems to be

justified, especially so, when polycrystalline structure is

changing too rapidly to be followed by other experimental

techniques. LDT may appear to be the only method of

studying rapid crystallization above 1 kHz sampling

frequency. This concerns non-isothermal processes with

fast cooling and/or orientation-induced crystallization. The

present model does not describe oriented systems. It will be

extended to accommodate inclined crystal plates and non-

random orientation distribution of their optical axes.
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